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Abstract

Sufficient conditions are given for the existence and the uniqueness of
complex ¢ solutions of a non-homogeneous system of linear difference equa-
tions and of two general classes of delay systems of linear difference equa-
tions. In some cases bounds of the established solutions are also given.
As a consequence of the space £5 where we work, information can be ob-
tained about the asymptotic behavior of the established solutions and, the
asymptotic stability of the zero equilibrium point of the systems under
consideration. The method we use is a functional-analytic one.
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1 Main results

In this short note we present the main results of a forthcoming paper. More
precisely we present conditions in order to establish the existence and uniqueness
of complex #5 solutions of the following

a) non-homogeneous linear system of difference equations

f(n+1) = A@R)f(n) + g(n), n=1,2,.., (1.1)

where f(n) = (fi(n),, fi(n)), g(n) = (g1(n), ... go(n)) are elements of £ =
£y x ... x {3 and A(n) = (a;;(n)) a k x k matrix of complex sequences, k a finite
e —

k—times
positive integer.
b) Delay, homogeneous, linear system of difference equations

R

r=1

1The complete paper will appear elsewhere.
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where f(n) = (fi(n), ... fu(n), A(n) = (A(n)) and A-(n) = (a7 (n), k x &
matrices of complex sequences, k a finite positive integer.
c) Delay, non-homogeneous, linear system of difference equations

(n—d;)fi(n —di + 1) = an(n) fi(n) + ... + aw(n) f(n) + g:(n), (1.3)

where a;;(n), n =1,2,..., %,j = 1,..., k bounded complex sequences, g;(n) € fs,
t=1,..,k and d;, 1 = 1, ..., k non-negative integers, & a finite positive integer.
The asymptotic stability of the homogeneous (g(n) = 0) system (1.1) was
studied in [4] and [7]. It is known that the autonomous (i.e. when A(n) = A =
constant matrix) homogeneous system (1.1) is asymptotically stable, if and only
if the absolute values of all the eigenvalues of the matrix A are less than one.
However, it is stated in [7] and a counterexample is given, that if v;(n),i =1, .. k&
are the eigenvalues of A(n) and v = 31;1? max |7:(n)|, then the inequality v < 1

does not imply the asymptotic stability of the homogeneous system (1.1). In this
note we give sufficient conditions so that the zero equilibrium point of (1.1) to
be asymptotically stable (see theorem 1.1 and remark 1.2). Also the asymptotic
behavior of the solutions of system (1.1) with A(n) = I + B(n), where I is the
identity matrix, was studied in [3] for n € {k,k+1,..}, k € {0,1,2,...}. Finally
the bounded solutions of system (1.1) were studied, among other things, in [2]
for n € Z.

In [1], an asymptotic representation as n — oo of the real solutions of (1.2).
with A a real diagonal matrix, was obtained. Also in [8], the asymptotic behavior
of (1.2) was studied for

k=2 An)=I-A R=m, A(n)=0,Vr=1,...m~-1, Ap= A4,

where A a constant matrix and I the identity matrix.
Finally, system (1.3) is the discrete equivalent of the following linear system
of differential equations:

R O O (14
dz
where 20 stands for (2%,...,z2%), A(z) = {a:i(2)} a k x k matrix and f(z) =

(f1(2), - fx(2)), 9(2) = (91(2), ., gr(2))-

By use of a functional-analytic method, it was proved in [5], that if A(z) is a
bounded operator on Hy(A) and k—d > 0, where d = TrD, D = diag(d,, ..., d;),
then the system (1.4) has at least k£ — d linearly independent solutions in Hy(A)*,
where Hy(A)F = Hy(A) x ... x Hy(A) is the Hilbert space consisting of the

~
k—times
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k—vector element of the form f(z) = (fi(2),..., fx(2)) and fi(2), i = 1,...,k
are elements of the Hilbert space Ho(A) of analytic functions defined by

Ho(A) = {g(z) :A—-C, g(z)= Zanzn'l, with Z lan|? < +oo} ;
n=1

n=1

where A = {2 € C: |z| < 1}.

It is shown in [5] that the system (1.4) is equivalent to an operator equation in
an abstract separable Hilbert space H. This operator equation is also equivalent
to the system (1.3). This is the reason that we characterize (1.3) as the discrete
equivalent of (1.4). For (1.3) we prove a result analogous to the above mentioned
result for (1.4) proved in [5] (see theorem 1.4). This technique, i.e. the derivation
of a linear difference equation or a system of linear difference equations, equivalent
to a linear differential equation or a system of linear differential equations, by use
of an operator equation, can be considered as an ”ideal discretization”, since no
errors (of any kind) are involved in the procedure.

The aim of this note is to give sufficient conditions so that the systems (1.1)
and (1.2) to have a unique complex solution in ££ and the system (1.3) to have
some linearly independent solutions in £%, where £5 = £, x ... x {5 is the Hilbert
space consisting of the k—vector element of the form z(n) = (z1(n), ..., zx(n)),
where z;(n), 1 = 1, ..., k is an element of the Hilbert space £, defined by:

o = {y(n) : N — Cwith Z ly(n)|* < —i—oo} :

n=1
Once we have established, under certain conditions, a solution of (1.1) or
(1.2) or (1.3) in 45, it is obvious from the definition of ¢4 that lim f;(n) = 0, V
t=1,....k. Thus the zero equilibrium point (0, ...,0) is an asymptotically stable

k—times
equilibrium point of (1.1) or (1.2) or (1.3). More precisely our results are the
following:

Theorem 1.1. Consider the system (1.1). If one of the following conditions hold:

k
sup Y supla;(n)] < 1, (1.5)
i m
or
lim aij(n) = 0, A4 Z] = ]., ceny k‘, (16)

n—oo
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or

k

lim a;(n) = 5;; < oo, with squ Bl <L, ¥V i,i=1,...k, (1-7)
i3

then the system (1.1) has a unique solution in £5. Moreover when (1.5) holds,

the solution f(n) is bounded by

) (1.8)

where f(1) = (f1(1), ..., fu(1)).

Remark 1.2. a) For the homogeneous (g(n) = 0), autonomous, diagonal (4 =
diag(ay, ..., ax) = constant matrix) system (1.1), condition (1.5) becomes

supja,| < 1. (1.9)

Since the eigenvalues A, of the diagonal matrix A are its diagonal elements Q.
condition (1.9) becomes
sup |As] < 1,
S

from which we have [A;| < 1,V s =1,...,k. Thus a consequence of theorem 1.1
is that, if condition (1.9) holds, then the zero equilibrium point of the homo-
geneous, autonomous, diagonal system (1.1), is asymptotically stable, which is
in accordance with the well-known result that the zero equilibrium point of the
homogeneous, autonomous, diagonal system (1.1), is asymptotically stable if the
absolute values of all the eigenvalues of A are less than one.

b) Theorem 1.1 gives sufficient conditions so that, the zero equilibrium point of
system (1.1) to be asymptotically stable, which is a quite useful information as
implied in [4] and [7].

Theorem 1.3. Consider the system (1.2). If one of the following conditions hold:

k R k
squsup [Aij(n)] + Zsuszup [ag)(n)J =1 (1.10)
1 =1 O T = j=1 n
or
lim A;;(n) =0, lim a;(n)=0, Vij=1,..k r=1,...R (1.11)
or

k R k
Jm Aij(n) =, lim afi(n) = B, with sup |+ sup Y 8| < 1.
, =1 r=1 ' j=1

(1.12)
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Ya, =1, . .857=1..81
then the system (1.2) has a unique solution in 5. Moreover if (1.10) holds,
then the solution f(n) is bounded by

1F (1)l
1—sup; 35 sup,, |\ ()| — 2 sup, 5 sup, [af (n)]

where f(1) = (f1(1), ..., fx(1)).

Theorem 1.4. Consider the system (1.3). Let D = diag(ds, ..., dx) and TrD =: d.
If k—d > 0, the system (1.3) has at least k£ — d linearly independent solutions in
2.

The method we use in order to obtain our results is a functional-analytic one.
It is actually a generalization of the method which was introduced in [6] and
used recently in [9]-[11], for the study of linear and non-linear ordinary difference
equations. This method is based on the representation of the space £5, by two
shift operators of an abstract separable Hilbert space H.

, (1.13)

I (m)lles <
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